NASA

Analysis of TES Observations from the 2006 TexAQS/GoMACCS Campaign

Greg Osterman, Kevin Bowman
Jet Propulsion Laboratory
California Institute of Technology

Jassim Al-Saadi NASA Langley Research Center

Brad Pierce NOAA/NESDIS

Wallace McMillan
University of Maryland Baltimore County

Aura Science Meeting October 4, 2007

Synthesis of satellite observations, in situ measurements, and chemistry and transport models

- Observations of ozone and carbon monoxide profiles in the free troposphere from TES can provide critical information for studying boundary layer exchange.
- Ground in situ observations such as AIRNow are the standard for boundary layer measurements of ozone and its precursors
- Chemistry and transport models such as the real-time air quality modeling system (RAQMS) are the critical link between these two observations
- The TexAQS/GoMACCS Campaign provided opportunities to test the synthesis of these tools

TES Step & Stare on August 23, 2006

Elevated CO and O3 over Houston region observed from TES Step & Stare on August 23, 2006

RAQMS CO and O3 Model Fields

RAQMS with the TES Observation Operator

AIRS CO – August 23, 2006

AIRS & TES CO – August 23, 2006

Local PM (ascending) AIRS CO at 500 mb on 20060823

AIRS & TES CO – August 23, 2006

Local PM (ascending) AIRS CO at 500 mb on 20060823

What is the origin of the ozone and CO enhancement?

TES orbits

➤ White lines represent 5-day back-trajectories emanating from Houston AIRNow Metropolitan statistical area (MSA) sites

Each point represents ozone averaged over a 5-day back-trajectory

Moderate values (60-70ppb) over Houston, but high values over Tennessee, Kentucky, Alabama, and Arkansas (~80 ppb)

Process history of O3 and CO

Ozone production in the boundary layer about 4 days prior to arrival in Houston

Process history of O3 and CO

Increase in CO at about the same time

Ozone production in the boundary layer about 4 days prior to arrival in Houston

CO coming from Fires in SE US?

MODIS Fire Count Data for Aug 19-28, 2006

Forward Trajectories from TES Observations

NOAA HYSPLIT MODEL
Forward trajectories starting at 13 UTC 23 Aug 06
EDAS Meteorological Data

Trajectories of O3 observed by TES at 422 hPa

NOAA HYSPLIT MODEL Backward trajectories ending at 13 UTC 23 Aug 06 EDAS Meteorological Data

Conclusions from Aug 23 Case

NASA

- Enhancement in both CO and O3 observed by TES east of the Houston area
 - Slightly higher values than in RAQMS fields
 - Consistent with AIRS CO and O3
- Model analysis suggests anthropogenic production of ozone from surface emissions at -90 hrs.
- MODIS Rapid Response maps suggest fires burning in SE United States throughout August
- Hysplit trajectories suggest ozone at 850 hPa observed by TES moved back over the Midwestern United States
- O3 observed in upper troposphere appears to come from the Southeastern US
- TES retrievals of CO and O3 vertical profiles in conjunction with the RAQMS global model provide a means of investigating the impact of distant sources on the background concentrations over Texas
 - Important concern of TCEQ and other researchers studying Air Quality in Texas
 - Ozone at 850 hPa on Aug 23rd, 2006 is above the boundary layer and therefore will have minimal impact on Houston air quality

TES Observations - Aug 30, 2006

- > TES Global Survey
- > High ozone in the troposphere over the Gulf of Mexico seen in Trop Column
- >Lower values over East TX

- ➤ Enhancement in ozone in middle troposphere over TX, OK, KA
- > Low ozone in lower troposphere over East Texas, Central Oklahoma
- High ozone in lower troposphere over the Gulf (still under investigation)

Nighttime Ozone – Aug 26, 2006

Total Num of Obs = 3137, Num of Valid Retrieval = 243

Elevated CO and O3 over Houston region observed from TES Step & Stare on August 23, 2006

NASA

MODIS Image – August 23, 2006

NASA

NOAA Forecast – August 23, 2006

Trajectories of O3 observed by TES at 422 hPa

NOAA HYSPLIT MODEL Forward trajectories starting at 13 UTC 23 Aug 06 EDAS Meteorological Data

